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Abstract

In general, the time of flight of a charged particle in an accelerator will depend on the particle’s transverse amplitude.
This effect can become important in machines with large transverse emittances, such as muon accelerators. We will
describe the effect, its physical origin, and the circumstances where it becomes important. We will then demonstrate
that the effect is directly related to chromaticity. We will describe the effect on the longitudinal dynamics in various
circumstances, including linacs and fixed field alternating gradient accelerators (FFAGs). We will describe methods
for correcting the effect, particularly in FFAGs.
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1. Introduction

In 2003, Palmer [1] demonstrated that in a lin-
ear non-scaling FFAG, there was a dependence of
the time of flight on the transverse amplitude. Since
the effect was small compared to both the RF pe-
riod and the variation in the time of flight itself, it
was hoped that the effect would not be too signifi-
cant. However, at the 2005 FFAG workshop at KEK,
Machida [2] demonstrated that particles with large
transverse amplitude were not accelerated in a linear
non-scaling FFAG. He also showed the same time-
of-flight dependence on the transverse amplitude.

In this paper, we will first demonstrate that the
time-of-flight dependence on transverse amplitude
is directly related to the chromaticity (transverse
oscillation frequency dependence on energy) of the
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machine. While this is a fairly straightforward con-
sequence of Hamiltonian dynamics, it has not gen-
erally been of great interest in accelerator studies
because
– Transverse oscillation amplitudes tend to be small

when compared to longitudinal oscillation ampli-
tudes.

– Chromaticity is corrected to near zero in most
circular machines.

– Longitudinal (synchrotron) oscillations will
switch the places of late and early arriving parti-
cles, reducing the impact of the late arrival of a
particle with large transverse amplitude.

This effect becomes interesting for muon machines,
in particular, because
– Transverse emittances (areas in phase space) are

starting to become comparable to longitudinal
emittances: after cooling for a neutrino factory, for
instance, they the transverse emittance is about
20% of the longitudinal.

– Many of the systems, such as the initial acceler-
ating linac and the FFAGs for later acceleration,
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cannot have their chromaticity corrected.
– Those same systems do not have significant syn-

chrotron oscillations.
Past studies have primarily looked at the effect of the
longitudinal motion on the transverse, in the context
of synchro-betatron coupling and resonances [3,4].

This effect has been studied before, in the context
of ionization cooling studies [5–7]. It manifested it-
self in a correlation between the transverse ampli-
tude and the energy, as will be explained later in
this paper. This paper connects the phenomenon
with chromaticity, and applies the theory to a wider
range of systems, where its effects are even stronger.
In particular, the effects in non-scaling FFAGs are
thoroughly examined.

2. Physical and Mathematical Description

In its simplest form, when magnets are linear, the
time of flight depends on transverse amplitude be-
cause a trajectory oscillating about the closed orbit
has a longer length than the closed orbit itself, as
can be seen in Fig. 1. This arises from the nonzero
angles that the oscillations make with respect to the
closed orbit. For small displacements about the ref-
erence orbit, the length added to the orbit is pro-
portional to the square of the orbit’s displacement.
This makes the time of flight increase with increas-
ing transverse amplitude.

To compute the effect in general, begin with the
Hamiltonian for the accelerator without RF cavities,
H(z, E, s), where z is a four-dimensional vector of
the transverse phase space coordinates, E is the en-
ergy, and s is the arc length along a reference curve
that defines the coordinate system (and is the in-
dependent variable). We find the energy-dependent
closed orbit for the transverse variables z0(E, s),
which is a solution for z of Hamilton’s equations
of motion and, for a closed ring (or periodic lat-
tice) where the length of the reference curve for a
turn/period is L, is a periodic function of s with pe-
riod L. We then compute a 4×4 matrix A(E, s) and
a function t0(E, s), which are periodic in s, such that
after the transformation from z and t (the time) to
z̄ and t̄ defined by

z = A(E, s)z̄ + z0(E, s) (1)

t = t̄ + t0(E, s) +
1

2
z̄T AT S(∂EA)z̄

+ z̄T AT S∂Ez0 +
1

2
zT

0 S∂Ez0, (2)

the Hamiltonian becomes

2πν(E) · Jn

L
+ HT (E) + O(J3/2

n ), (3)

where Jn is the two-dimensional vector of action
variables, defined by Jn,1 = (z̄2

1 + z̄2
2)/2, Jn,2 =

(z̄2
3 + z̄2

4)/2, and S is the 4-dimensional symplectic
metric

S =

















0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

















. (4)

I have introduced the notation ∂E , which is the par-
tial derivative of the following function with respect
to E. The subscript n is an indication that I am not
using the usual action variables with dimensions of
length, but instead I have not divided the Hamil-
tonian and the momenta by the total momentum
or a reference momentum as is usually done, so the
dimensions are Jn are energy-time. Jn should be
nearly invariant as one accelerates. ν is the tune as
generally defined.

Note that the difference between t and t̄ is a pe-
riodic function of s. Thus, any time advance from
one turn/period to the next will be governed by the
Hamiltonian (3). From Hamilton’s equations of mo-
tion

dt̄

ds
= −∂EHT −

2π(∂Eν) · Jn

L
+ O(J3/2

n ). (5)

This is the fundamental theoretical result of this pa-
per: that the time of flight depends on the transverse
amplitude, and the lowest order dependence is di-
rectly related to the tune variation with energy, also
known as the chromaticity.

The result is qualitatively consistent with the
original description of the phenomenon: namely
that increased orbit lengths for particles with large
transverse amplitudes increases the time of flight.
Since for a lattice with no chromaticity correction,
the tune decreases with increasing energy, Eq. (5)
indicates that the time of flight will increase with
increasing transverse amplitude, consistent with
the expected behavior. Furthermore, Eq. (5) is lin-
ear in Jn, and therefore quadratic in the transverse
displacement, again as expected geometrically.

But interestingly, correction of chromaticity is
able to reduce or eliminate the dependence of time
of flight on transverse amplitude. Sextupoles are
introduced into a machine at points with nonzero
dispersion to correct chromaticity [8–10]. One wants
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Fig. 1. Betatron oscillations with different amplitudes, showing which the trajectory length increases with increasing transverse
amplitude.

to increase the tune with increasing energy to cor-
rect the chromaticity. For this argument, assume a
FODO cell with a positive dispersion. To increase
the horizontal chromaticity, one needs a focusing
strength at the focusing quadrupole (primarily)
which increases with momentum. This requires a
vertical field whose derivative increases with in-
creasing position, since the dispersion is positive.
This implies a sextupole which has a vertical field
that is parabolic in the midplane and positive. Now,
consider oscillations in that field. Since the field is
quadratic, the average field seen by a particle un-
dergoing a nonzero amplitude horizontal oscillation
is positive. This acts like an increase in the average
dipole field, resulting in an average radius of the
beam which is reduced. This reduces the length
of the orbit, and thus the time it takes to move
along the orbit. The average field coming from the
sextupole is proportional to the square of the max-
imum horizontal displacement in the oscillation.
Thus, correcting horizontal chromaticity results in
a reduced time of flight for large transverse ampli-
tudes due to the chromatic correction sextupoles,
and consistent with Eq. (5).

For vertical chromaticity correction, one should
have a sextupole at the defocusing quadrupole (pri-
marily) which has a horizontal field whose vertical
gradient decreases with increasing horizontal posi-
tion. From Maxwell’s equations, this means that the
second derivative of the vertical field with respect to
vertical position must be positive. As in the horizon-
tal case, vertical oscillations will thus increase the
average bending field proportionally to the square
of the vertical displacement, resulting in a lower av-
erage beam radius and a lower time of flight.

This result is a useful theoretical tool for two rea-
sons. First of all, in the early design stages of accel-
erator subsystems, one generally computes energy-
dependent closed orbits and the tune as a function of
energy. Since that information is available already, it
allows one to immediately estimate the effect on the
time of flight. Computing it directly requires track-
ing for a good distance at nonzero transverse am-

plitudes, and averaging out oscillatory effects. This
requires some trial and error to insure that one is
getting the desired result. In any case, it is an extra
step, when one could have computed the result with-
out performing it. Secondly, one immediately knows
one way to go about correcting the effect: by correct-
ing the chromaticity. The procedures for correcting
chromaticity are well-known and straightforward.

3. Applications to Accelerator Systems

We now examine the effect of the amplitude de-
pendence of the time of flight on various accelera-
tor subsystems, all of which appear in most muon
acceleration systems. We will consider motion in a
stationary RF bucket, acceleration in a linac, and
acceleration in a non-scaling FFAG. We will obtain
some rough numerical results for muon systems with
reasonable parameters to give an idea of the signifi-
cance of the effect.

3.1. Stationary RF Bucket

For a stationary RF bucket, one first wants to find
the fixed point about which one oscillates. This can
be done using Eq. (5), by finding the solution where
dt̄/ds = h/(fRFL), where fRF is the RF frequency,
and h is the harmonic number. Say that E0 is the
energy where ∂EHT = h/(fRFL). Expanding ∂EHT

to first order near E0, one finds that for small Jn,
the fixed point energy is

E0 −
2π(∂Eν) · Jn

L∂2

EHT
, (6)

where all the derivatives are evaluated at E0. In
terms of the usual quantities, this is

E0 +
2πξ · Jn

T0η
, (7)

where T0 is the time of flight along the closed orbit
at energy E0, ξ is the chromaticity, defined such
that the tune at energies near E0 is given by ν +
ξ(∆p/p), with p being the total momentum, and η
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is the frequency slip factor. A similar result holds
for a non-stationary bucket.

It seems curious that the effect of the time of flight
depending on amplitude is to have the fixed point
energy change with amplitude. The reason is that
the particles always oscillate about a point which
is synchronized with the RF frequency. Thus, the
fixed point comes about by adjusting the energy
so as to adjust the time of flight for particles with
a finite transverse amplitude so that they are syn-
chronized with the RF. Therefore, for a group of
particles arriving at the same time and energy at
the zero-amplitude fixed point, the particles with
large transverse amplitudes will start to oscillate
about the large-amplitude fixed point, effectively in-
creasing their longitudinal emittance. The entire RF
bucket will shift as well because of this effect. Pre-
cisely how will depend on how HT and ν vary with
energy.

Let’s take the example of a muon cooling lat-
tice [11]. The chromaticity is about 0.24, and η =
−1/γ2, with γ being the ratio of the total energy to
the muon’s rest mass energy. The cell length is about
75 cm. The maximum normalized transverse ampli-
tude at the beginning of the channel is about 60 mm
(which is 2Jn/mc where m is the muon mass and
c is the speed of light). The resulting closed orbit
shift at that amplitude and a reference momentum
of 220 MeV/c is about 31 MeV. Considering that
the full energy spread of the beam extracted from
the cooling channel is about ±46 MeV/c, this is sig-
nificant. Those who have studied ionization cooling
have been aware of this effect [5–7], and have found
it important to correctly place an amplitude-energy
correlation into a beam before it enters a cooling
channel.

3.2. Linac

Consider a linac where the particles are rela-
tivistic enough that synchrotron oscillations can be
neglected. This is true for muons once they have
reached a few hundred MeV. Say that the tune per
cell in a linac is adjusted to be independent of the
momentum as the beam is accelerated (if it is not,
see the next subsection). If one assumes a constant
accelerating gradient, then a particle with nonzero
transverse amplitude arrives at a time differing
from that of a zero amplitude particle by

−
2π

∆E
ln

(

pf

pi

)

ξ · Jn, (8)

where pi is the initial momentum and pf is the final
momentum (for the entire length of linac), and ∆E
is the energy gain per cell, assuming that ξ is the
chromaticity for that same cell.

Taking, for example, the last section of the low en-
ergy acceleration linac from [11], which accelerates
muons from around 520 MeV to 1500 MeV, consid-
ering particles with a normalized transverse ampli-
tude of 30 mm, and assuming a chromaticity of -0.25,
the large transverse amplitude particles are behind
the zero transverse amplitude particles by 0.4 ns.
For 201.25 MHz RF, this is about 30◦ of phase. This
is comparable to the bunch length that we are accel-
erating. Thus, one should take these high amplitude
particles into account when designing the linac, to
try to ensure that their energy gain is not so differ-
ent from the low amplitude particles. This will be
complicated, however, by the desire to ensure that
the all the particles in the longitudinal distribution
also gain roughly the same energy.

Increasing the energy gain per cell reduces the
time of flight variation with transverse amplitude,
essentially because the number of cells the particles
traverse is inversely proportional to the energy gain
per cell, and the time of flight variation is essentially
proportional to the number of cells traversed.

3.3. FFAGs

FFAGs behave in many ways like a linac, but
there are some important differences. First, because
an FFAG is a multiturn machine, the tune of each
cell is not in general (except for scaling FFAGs) ad-
justed to be the same, so Eq. (8) is not quite cor-
rect. Secondly, the RF dynamics can be more com-
plicated [12–15].

The time of flight difference for large amplitude
particles can be computed, assuming a uniform ac-
celerating gradient, to be

−
2π(∆ν) · Jn

∆E
, (9)

where ∆E is the energy gain per cell, and ∆ν is the
change in the tune per cell from the initial to the fi-
nal energy. Just as in a linac, the effect is reduced if
the amount of acceleration per cell is increased. The
effect can also be improved by reducing the range of
tunes over the acceleration range. One in principle
has much greater control over the tunes in an FFAG
than in a linac, since there is bending and therefore
the opportunity to correct chromaticity. In fact, the
scaling FFAG [16] allows one to in principle elimi-
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nate the tune variation with energy entirely, elim-
inating the time of flight variation with transverse
amplitude to lowest order. For various reasons not
discussed here, however, there are reasons to con-
sider FFAGs where the tune does vary with energy,
in particular linear non-scaling FFAGs [17,18].

Let’s consider the example of a 10–20 GeV lin-
ear non-scaling FFAG for muons, with a transverse
normalized amplitude of 30 mm, an energy gain of
12.75 MeV per cell, and a tune range of 0.21. This
results a 0.55 ns time slip over the acceleration cy-
cle for a high amplitude particle when compared to
a zero amplitude one. For 201.25 MHz RF, this cor-
responds to a 40◦ phase slip.

In addition, FFAGs tend to use multiple stages to
perform their acceleration. Thus, a second stage will
tend to increase the time difference even more. If one
could perform half a synchrotron oscillation between
stages, then in principle the low and high ampli-
tude particles would switch places and would come
back together at the end of two stages. However,
constructing such a synchrotron oscillation would
require an additional ring (or arc) with RF voltage
comparable to that required for a single FFAG stage,
and thus becomes extremely costly.

One could attempt to correct the effect by creating
a positive chromaticity in the transfer line between
the FFAG stages. One can compute the required
chromaticity for the transfer line using Eqs. (5) and
(9):

ξ = −
β2E

∆E
∆ν, (10)

where β is the reference velocity divided by the speed
of light, E is the reference energy, ∆E and ∆ν are
as they were in Eq. (9), and ξ is the chromaticity
for the entire beam line. The difficulty is the ratio
E/∆E, which is approximately the number of turns
in the FFAG times the number of cells. The transfer
line cannot expect to create a chromaticity per cell
that is larger than −∆ν, and thus the number of
cells in the transfer line would need to be extremely
large for this to work.

3.3.1. Chromaticity Correction of the FFAG

Of course, one could attempt to correct the chro-
maticity in the FFAG itself. However, in doing so,
one quickly runs up against what makes a linear
non-scaling FFAG work well: it is able to tolerate
the tune variation despite passing through low-order
resonances because

0.0 0.1 0.2 0.3 0.4 0.5
νx

0.0

0.1

0.2

0.3

0.4

0.5

ν y
Fig. 2. Tune footprint for a non-scaling FFAG for various
levels of sextupole. The nearly straight black line gives the
tune footprint for no sextupole. The more curved grey lines
are for increasing levels of sextupole, providing correction

from 10% to 50% of the chromaticity. Other lines indicate
resonances up through third order, solid lines indicating reso-
nances that are driven directly by upright sextupoles, dashed

lines indicating resonances that aren’t.

– the magnets are highly linear, so any resonances
are driven very weakly,

– acceleration is rapid, so resonances are passed
through very quickly, and

– The lattice is highly symmetric, consisting en-
tirely of short, simple, identical cells.

Adding nonlinearities has the potential to violate
the first of these conditions. In fact, any non-scaling
lattice with a significant amount of nonlinearity thus
far constructed has failed to have sufficient dynamic
aperture, at least for acceleration of muon beams
that are only modestly cooled [19–21]. Nonetheless,
one might hope that the effect can at least be re-
duced by adding a modest amount of chromaticity,
while simultaneously keeping a sufficiently large dy-
namic aperture (with purely linear magnets, the dy-
namic aperture is generally much large than nec-
essary, even with the large dynamic aperture re-
quired).

Figure 2 shows the zero-amplitude tune coverage
over the energy range of a non-scaling FFAG for
various levels of chromaticity correction. A lattice
is first constructed which is below the 3νx = 1 line,
and whose tune is equidistant from the 3νx = 1
and νx − νy = 0 lines at the low energy end and
the νx − 2νy = 0 line at the high energy end. This
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avoids the resonances that would be directly driven
by the sextupole once we add it, as well as avoid-
ing the linear coupling resonance. Higher horizontal
tunes are generally preferred for linear non-scaling
lattices [22], so one is making a sacrifice by staying
below the 3νx = 1 resonance, but adding sextupoles
will strongly drive that resonance [23,11], so it is
necessary.

We then add sextupole and adjust the dipole and
quadrupole fields in the lattice such that the tunes
at the low and high energies are given by

ν lo(x) = (1 − x/2)ν lo(0) + (x/2)νhi(0) (11)

νhi(x) = (x/2)ν lo(0) + (1 − x/2)νhi(0), (12)

where x is the fraction by which the chromaticity
is corrected. Figure 2 shows the tune coverage for
values of x up to 0.5. Note that it is really the dif-
ference between the low and high energy tunes that
are being corrected, not the chromaticity at a given
energy. Doing so would have required adding higher
order multipoles, which would have then driven res-
onances (such as νx = 1/4) directly that we have
not avoided, leading to potential losses of dynamic
aperture.

Tracking by Machida [24] indicates that the dy-
namic aperture is acceptable up to x around 0.3. One
does have particle losses when crossing the 4νx =
1 resonance, but the lattice parameters can be ad-
justed to stay just below that. For higher amounts
of chromaticity correction, the dynamic aperture is
reduced at all energies, so avoiding resonances will
not improve the situation. If a higher level of chro-
maticity correction were possible, one could even
think about running at a large horizontal tune by
staying entirely above the 3νx = 1 line, but the lim-
ited level of chromaticity correction that seems to
be possible precludes that. One cannot create multi-
ple sextupole families to try to improve the dynamic
aperture since every cell must be identical (to the
extent possible) to avoid introducing even more res-
onances.

3.3.2. FFAG Phase Space Dynamics

Further complications arise when one considers
the longitudinal phase space dynamics of a linear
non-scaling FFAG. The time of flight in a linear non-
scaling FFAG can be made to be a nearly symmet-
ric parabola [25] when the particles are highly rel-
ativistic. This leads to particles moving through a
serpentine channel through phase space, as shown
in Fig. 3 [12–15]. Figure 4 shows what the time of

-0.5π -0.25π 0π 0.25π 0.5π
RF Phase

E
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y

Fig. 3. Evolution of a bunch in longitudinal phase space,
showing the boundaries of the phase space channel.
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Fig. 4. Time of flight as a function of energy for a single linear
non-scaling FFAG cell. The solid curve is for zero amplitude,

the dashed curved is for a horizontal amplitude of 30 mm.
The horizontal dashed line is the minimum value of the time
that is synchronized to the RF for zero amplitude particles,
and the horizontal dotted line is its maximum value.

flight as a function of energy looks like for both
zero amplitude particles and particles with a larger
transverse amplitude. The RF frequency (or the cell
length) is adjusted so that particles with a certain
time of flight are synchronized with the RF. Parti-
cles can only be accelerated over the desired energy
range for a limited range of values for this synchro-
nization time, which is indicated for the zero trans-
verse amplitude particles in Fig. 4 [15]. In fact, the
volume of phase space transmitted is better for cer-
tain values for that synchronization time than oth-
ers. Since particles with a nonzero transverse am-
plitude have a different time of flight as a function
of energy, the optimal synchronization time will be
different for large amplitude particles than for zero
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Fig. 5. Allowed longitudinal phase space for zero amplitude
particles (black) and large amplitude particles (light grey).
The region where they overlap is indicated in dark grey.

amplitude particles. In fact, it may be that there is
no value for the synchronization time for which both
low amplitude and high amplitude particles will be
accelerated.

Another way to look at the problem is to examine
the longitudinal phase space. Figure 5 shows the lon-
gitudinal phase space through which particles of low
amplitude will be accelerated, and the phase space
through which particles of high amplitude will be
accelerated, for one sample set of parameters. No-
tice the limited overlap at low energies. Thus, only
a very limited range of phases in this example can
be accelerated, much more limited than the range of
phases one would have expected by only looking at
low amplitude particles. If the zero amplitude par-
ticles alone were used to determine the initial con-
ditions, many of the high amplitude particles would
not be accelerated at all, which is precisely what is
seen in [2]. Furthermore, since the initial conditions
that overlap cannot be centered in the channel at ei-
ther amplitude, there will be much greater longitu-
dinal distortion of the bunch than one would have if
one were centered in the channel and only had parti-
cles with small transverse amplitudes. However, this
is ameliorated by the fact that in most cases, one
only needs a small longitudinal acceptance for par-
ticles with large transverse amplitudes.

Finally, as discussed before, particles with differ-
ent amplitudes clearly arrive at different times, even
though they start out at the same point in longitu-
dinal phase space. This can be seen from Fig. 5. Par-
ticles that start out in the overlapping region at low
energy will arrive with a phase close to zero if they
have low transverse amplitudes, but will arrive near

a phase of π/2 if they had high transverse ampli-
tudes, since the particles move along lines that are
more or less parallel to the left and right separatri-
ces. In fact, due to differing times (really numbers of
cells) to traverse the paths, they will also probably
arrive with different energies as well.

3.3.3. Addressing the Problem in FFAGs

To address the amplitude dependence of the time
of flight in non-scaling FFAGs, one should probably
apply a number of methods, each of which individ-
ually will make the problem somewhat better, and
hopefully together will make the machine perform
acceptably:
– Introduce sextupole components into the magnets

to partially correct the chromaticity.
– Create positive chromaticity in the transfer line.

This is less likely to give the dynamic aperture
problems found in the FFAG since one is no longer
required to make every cell identical, since one
only need handle the energy spread of the beam
in the transfer line.

– Introduce second or third harmonic RF into the
FFAG. This will reduce the energy spread in the
particles that comes from the different longitudi-
nal phase space dynamics that particles with dif-
ferent transverse amplitudes have.

– Increase the amount of voltage per cell. This
helps both because the time of flight variation
with transverse amplitude is reduced (Eq. (9)),
but also because the phase space channel for the
particles gets larger, increasing the overlapping
area for different transverse amplitudes [15]. Op-
timized machine designs often left empty cells
because doing so reduced the magnet aperture
and therefore the cost [26]. It appears more im-
portant to correct the problem described here.
One could even use two-cell cavities rather than
single cell to improve the behavior further, but
this could potentially increase costs significantly.

4. Conclusions

We have demonstrated that the lowest order de-
pendence of the time of flight on transverse ampli-
tude is directly related to the chromaticity of a ma-
chine. We have used that fact to quickly estimate its
effect in several accelerator systems. In particular,
we have shown why it is important in non-scaling
FFAGs, and have explored possible methods of ad-
dressing the problem.
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